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Accurate and quantitative information on soil properties of each and every location is essential for site specific
sustainable management of land resources. A study was conducted to predict the different key soil properties
of Northern Karnataka as per GlobalSoilMap specifications using Quantile Regression Forest (QRF) Model.
Along with Sentinel-2 data, terrain attributes such as elevation, slope, aspect, topographic wetness index,
topographic position index, plan and profile curvature, multi-resolution index of valley bottom flatness,
multi-resolution ridge top flatness and vegetation factors like NDVI and EVI were used as covariates. Equal-
area quadratic splines were fitted to soil profile datasets to estimate soil properties viz. pH, OC, CEC, clay, sand,
silt, field capacity and permanent wilting point at six standard soil depths (0–5, 5–15, 15–30, 30–60, 60–100
and 100–200 cm) as per GlobalSoilMap specifications. The coefficient of determination (R2), mean error (ME)
and root mean square error (RMSE) were calculated in order to assess model performance. Prediction interval
coverage percentage (PICP) was calculated to evaluate the associated uncertainty predictions. The predicted
soil properties are reliable with minimum errors and the QRF model captured maximum variability for most of
the soil properties.
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1. Introduction

Soil properties are assessed through resource inventorisation with
themain objective to delineate areas which need uniformmanagement
practices and provide users with information on soil properties. Assess-
ment of spatial distribution of soil properties for each location is impor-
tant for site-specific land management, land evaluation and land
suitability analysis (Gessler et al., 2000; McBratney et al., 2003).
Although several spatial soil databases are developed throughout the
world, they are neither exhaustive nor precise enough for ensuring en-
lightened decisions. For example, though digitized soil maps are avail-
able for most of the world (Grunwald et al., 2011), those information
are at very small scale (1:1 million or coarser) for many areas and do
not adequately represent soil variability in a format that is useful for a
non-pedologists (Sanchez et al., 2009). Digital soil mapping (DSM) rep-
resents a ground-breaking solution compared to conventional soil sur-
vey by its ability to exploit large sets of spatial data, to produce
uncertainty estimates associated with soil predictions and can be
marajan).
revised once new data are collected (Lagacherie and McBratney,
2007). Soil database generated through field sampling and laboratory
analysis are used to feed a DSM model that predicts soil properties in
areas not sampled. Digital soil maps also provide the uncertainties
associated with such predictions. The overall uncertainty of the pre-
diction is estimated by combining uncertainties of input data, spatial
inference, and soil functions (Dharumarajan et al., 2019a). Uncer-
tainties are essential for understanding and dealing with risk in
decision-making.

DSM has moved from a largely academic towards an operational
activity through GlobalSoilMap project (http://www.globalsoilmap.
net/). The project aims to map the several key soil properties of
globe onto a three-dimensional grid at fine spatial resolution with
local uncertainty estimates (Arrouays et al., 2014). The first versions
of GlobalSoilMap products have already been produced in various
countries (Mulder et al., 2016; Grundy et al., 2015; Adhikari et al.,
2014; Poggio and Gimona, 2017) with spatial inference functions
using globally available landscape parameters such as Digital Eleva-
tion Models, multispectral remote sensing, geology maps, and legacy
soil maps as inputs.

In India, ICAR-National Bureau of Soil Survey and Land Use Planning
(ICAR-NBSS&LUP), Nagpur has recently launched an ambitious program
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Table 1
Different covariates used in the model.

Predictor Source Resolution

Elevation (m) SRTM DEM 30 m
Slope (%) SRTM DEM 30 m
Aspect SRTM DEM 30 m
TPI SRTM DEM 30 m
TWI SRTM DEM 30 m
Plan curvature SRTM DEM 30 m
Profile curvature SRTM DEM 30 m
MrVBF SRTM DEM 30 m
MrRTF SRTM DEM 30 m
NDVI MOD13Q1(2011–2015) 250 m _16 days
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called “IndianSoilGrids” with the objective to develop soil properties
map as per GlobalSoilMap Specifications. In recent past, effort has
been made to compile the legacy soil data in the form of harmonized
databases and stored in NBSS&LUP Geoportal. Besides pursuing the
storage effort, IndianSoilGrids project paved the ways to exploit leg-
acy soil data through DSM models. In this context, the present ex-
ploratory study was carried out to produce a fine resolution map of
major GlobalSoilMap soil properties such as organic carbon, pH,
CEC, clay, sand, silt, field capacity and permanent wilting point
in part of Northern Karnataka Plateau region representing semi arid
tropics of south India using Quantile Regression Forest Model
techniques.
EVI MOD13Q1(2011–2015)
Sentinel-2 13 bands of Sentinel 2 data 10-60 m
2. Materials and methods

2.1. Study area

The present study was carried out in part of Koppal and Gadag dis-
tricts of Northern Karnataka Plateau (Fig. 1). The study area is located
in 14° 56′ to 15° 37′ N latitude and 75°23′ to 76° 25′ longitude with an
area of 3655 km2. The study region represents hot semi-arid climate
with rainfall range of 600–750 mm and potential evapo-transpiration
(PET) of 1600–1700 mm. The average annual rainfall is 672 mm. This
area includes mountainous, expansive plateau with substantial area is
underlined by basalts with continuation of Deccan trap of Maharashtra.
The major area comes under rainfed cultivation with crops like Sor-
ghum, Pigeon pea and Pearl millet. Themajor soils represented by shal-
low to deep vertisols, alfisols and inceptisols.
Fig. 1. Study area with
2.2. Sampling methodology

The profiles studied under Sujala III (KarnatakaWatershed Develop-
ment Project II) project were used for mapping of soil properties. Sixty
soil profiles were studied upto 2 m or hard rock based on variability in
landform and land use. The soil horizons were demarcated and from
the representative soil horizons, soil samples were collected for labora-
tory analysis. Collected soil samples were air dried in shade and passed
through 2 mm sieve by gently ground with a wooden mallet. The sam-
ples were analysed for particle-size distribution following International
Pipette method (Richards, 1954), pH and electrical conductivity (EC) in
1:2.5 soil:water suspension (Jackson, 1962). Organic carbon was esti-
mated by Walkley and Black (1934) method. The cation exchange ca-
pacity (CEC) and exchangeable cations were determined as described
profile locations.

Image of Fig. 1


Table 2
Statistical results of soil properties.

Properties Mean Min Max Std dev. Skewness Kurtosis

pH 8.2 4.7 9.9 1.1 −1.2 0.9
OC (%) 0.5 0.11 1.16 0.23 0.5 −0.35
Clay(%) 42.6 4.1 75.8 18.2 −0.1 −0.8
Sand(%) 41.3 8.7 87.6 22 0.3 −1
Silt(%) 16.1 4.7 40.7 6.9 0.6 0.3
CEC (c mol(+) kg−1) 32.3 2 80.9 20.5 0.3 −1.1
FC(%) 29.2 6 60 12.2 0.3 −0.6
PWP(%) 18.5 1.5 43.7 10.5 0.5 −0.6
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by Jackson (1973). Field capacity (FC) and permanent wilting point
(PWP) were estimated using pressure plate apparatus (Richards et al.,
1956). The profile soil properties were pre-processed by harmonization
of soil depth interval (GlobalSoilMap depth specification) predictions
using equal-area spline functions (Bishop et al., 1999).

2.3. Environmental covariates and models used

A Digital elevationmodel (DEM)with 30m resolution was obtained
from SRTM and processed using ArcGIS10 data management tool box.
Table 3
Performance of Quantile Regression Forest model for prediction of soil properties.

Mean error

pH 0–5 cm −0.19 ± 0.02
5–15 cm −0.18 ± 0.02
15–30 cm −0.18 ± 0.02
30-60 cm −0.14 ± 0.03
60–100 cm −0.3 ± 0.02
100-200 cm −0.23 ± 0.01

OC (%) 0–5 cm −0.02 ± 0.0
5–15 cm −0.02 ± 0.01
15–30 cm 0.0 ± 0.00
30-60 cm 0.02 ± 0.01
60–100 cm 0.03 ± 0.01
100-200 cm 0.03 ± 0.00

Clay (%) 0–5 cm 0.19 ± 0.2
5–15 cm 2 0.22 ± 0.17
15–30 cm 0.59 ± 0.16
30-60 cm −0.04 ± 0.51
60–100 cm 0.0 ± 0.09
100-200 cm 0.05 ± 0.21

Sand (%) 0–5 cm 1.54 ± 0.56
5–15 cm 2.25 ± 0.56
15–30 cm 1.37 ± 0.44
30-60 cm 40.04 ± 0.45
60–100 cm −0.24 ± 0.52
100-200 cm 0.1 ± 0.92

Silt (%) 0–5 cm −0.20 ± 0.39
5–15 cm 0.05 ± 0.32
15–30 cm −0.08 ± 0.31
30-60 cm 0.57 ± 0.17
60–100 cm 0.53 ± 0.49
100-200 cm 0.57 ± 0.17

CEC (C mol kg−1) 0–5 cm 1.26 ± 0.27
5–15 cm 1.19 ± 0.51
15–30 cm 1.03 ± 0.38
30-60 cm 1.19 ± 0.67
60–100 cm 1.52 ± 0.61
100-200 cm 1.55 ± 0.69

FC (%) 0–5 cm 0.03 ± 0.25
5–15 cm 0.12 ± 0.28
15–30 cm −0.04 ± 0.2
30-60 cm 0.26 ± 0.16
60–100 cm 0.66 ± 0.37
100-200 cm −0.29 ± 0.31

PWP (%) 0–5 cm 0.26 ± 0.21
5–15 cm 0.3 ± 0.21
15–30 cm 0.3 ± 0.16
30-60 cm 0.50 ± 0.17
60–100 cm 0.79 ± 0.19
100-200 cm 0.84 ± 0.37
The primary and secondary derivates of DEM like elevation, slope, as-
pect, curvatures (plan and profile), topographic wetness index (TWI)
and topographic position index (TPI), LS factor, Multi-resolution Ridge
Top Flatness (MrRTF) and Multi-resolution Index of Valley Bottom
Flatness (MrVBF) were derived by using Saga-GIS 6.3.0 version. Along
with DEM attributes, all the bands of Sentinel- 2 imagery (13 bands),
Normalized Difference Vegetation Index (NDVI) and Enhanced vegeta-
tion index (EVI) (MOD13Q1) were used as covariates for prediction of
soil properties (Table.1). The environmental variables were intersected
for all the sampling points for prediction of soil properties.

Quantile regression forest (QRF) model was used for prediction of
soil properties and uncertainty estimates in the study area. QRF is an ex-
tension of Random forestmodel and the advantage of QRF over Random
Forest model (RFM) is for each node in each tree, RFM keeps only the
mean of the observations that fall into this node and neglects all other
information whereas QRF keeps the value of all observations in this
node, and assesses the conditional distribution based on the informa-
tion (Meinshausen, 2006; Vaysse and Lagacherie, 2017; Dharumarajan
et al., 2019a). For the present study, ranger package was used for run-
ning theQRF algorithm in R environment. Ranger package helps to iden-
tify the best RF properties for running the model. Ten folds cross
RMSE R2(%) PICP

0.96 ± 0.02 10 ± 5 88.7 ± 1.3
0.94 ± 0.03 13 ± 6 89.0 ± 0.78
0.95 ± 0.03 8 ± 9 90.0 ± 1.1
1.00 ± 0.03 9 ± 6 88.3 ± 2.0
1.02 ± 0.02 23 ± 3 89.3 ± 2.1
0.88 ± 0.03 4 ± 8 86.4 ± 3.2
0.22 ± 0.01 08 ± 6 87.5 ± 1.7
0.22 ± 0.01 07 ± 5 86.2 ± 1.9
0.21 ± 0.01 10 ± 4 86.8 ± 2.3
0.20 ± 0.01 27 ± 4 88.6 ± 1.5
0.19 ± 0.00 0 ± 2 89.4 ± 1.7
0.20 ± 0.00 5 ± 3 84.8 ± 2.1
6.10 ± 0.29 37 ± 6 88.4 ± 2.3
6.04 ± 0.22 39 ± 5 88.3 ± 2.0
6.09 ± 0.20 39 ± 4 88.2 ± 1.2
12.39 ± 0.42 43 ± 4 87.2 ± 2.3
4.95 ± 0.1 18 ± 3 88.3 ± 2.1
5.2 ± 0.22 0 ± 8 83.2 ± 1.6
17.24 ± 0.59 48 ± 4 86.6 ± 1.7
16.92 ± 0.72 49 ± 4 87.6 ± 2.0
16.10 ± 0.34 45 ± 2 85.3 ± 1.4
17.86 ± 0.43 42 ± 3 92.2 ± 1.2
15.43 ± 1.18 45 ± 9 93.6 ± 1.3
16.66 ± 0.94 41 ± 7 88 ± 0.0
13.47 ± 0.5 49 ± 4 91.8 ± 1.5
13.90 ± 0.44 45 ± 4 90.8 ± 1.6
13.45 ± 0.40 40 ± 4 89.5 ± 1.2
6.30 ± 0.21 29 ± 5 84.0 ± 1.8
11.78 ± 0.58 52 ± 5 90.8 ± 1.3
6.30 ± 0.21 29 ± 5 84.0 ± 1.8
13.48 ± 0.66 51 ± 5 87.6 ± 1.2
13.47 ± 0.42 51 ± 3 86.9 ± 1.5
12.27 ± 0.37 56 ± 3 87.6 ± 1.9
14.88 ± 0.55 43 ± 4 87.1 ± 2.3
15.98 ± 0.66 40 ± 5 88.8 ± 2.3
17.1 ± 0.71 31 ± 6 87.1 ± 2.3
8.42 ± 0.29 36 ± 4 88 ± 2.9
8.69 ± 0.21 30 ± 3 88.0 ± 2.5
7.79 ± 0.15 37 ± 3 86.0 ± 1.6
8.49 ± 0.15 38 ± 2 85.7 ± 2.1
10.1 ± 0.41 38 ± 5 89.6 ± 1.5
10.7 ± 0.41 40 ± 5 84.6 ± 2.4
6.8 ± 0.2 41 ± 3 92.0 ± 1.5
6.74 ± 0.25 41 ± 4 91.9 ± 1.4
6.31 ± 0.13 43 ± 2 89.9 ± 1.7
6.91 ± 0.16 47 ± 3 91.6 ± 2.1
8.62 ± 0.39 42 ± 5 90.8 ± 1.8
8.89 ± 0.53 49 ± 6 90.6 ± 2.7



Fig. 2. (a–h). Observed soil properties Vs Predicted soil properties in 0-5 cm depth.

Fig. 3. (a–h). Variation importance ranking of Random forest model in prediction of different soil properties.
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Image of Fig. 2
Image of Fig. 3


Table 4
Summary statistics of predicted soil properties.

Mean Min Max stdev Kurtosis Skewness

pH 0–5 cm 8.1 5.5 9.2 0.6 2.2 −1.5
5–15 cm 8.2 5.9 9.2 0.4 1.8 −0.8
15–30 cm 8.2 6.0 9.2 0.3 5.7 −1.6
30-60 cm 8.2 6.4 9.3 0.4 3.8 −0.9
60–100 cm 8.5 6.5 9.2 0.3 5.3 −1.5
100-200 cm 8.6 8.0 9.1 0.2 1.7 −1.4

OC (%) 0–5 cm 0.61 0.35 0.83 0.08 0.9 1.3
5–15 cm 0.60 0.40 0.84 0.07 3.0 1.7
15–30 cm 0.59 0.37 0.83 0.10 −0.5 0.5
30-60 cm 0.59 0.28 0.80 0.11 −0.7 0.0
60–100 cm 0.4 0.3 0.6 0.1 −0.9 −0.1
100-200 cm 0.4 0.3 0.6 0.0 9.9 0.9

Clay (%) 0–5 cm 16.2 5.5 32.6 5.1 −1.0 0.0
5–15 cm 36.6 7.7 62.1 11.3 −0.7 −0.2
15–30 cm 39.9 7.3 64.1 8.6 0.0 0.2
30-60 cm 45.7 8.5 66.5 8.6 0.1 0.6
60–100 cm 15.2 8.0 19.0 2.4 −1.3 −0.2
100-200 cm 17.2 12.1 21.7 1.7 1.6 −0.5

Sand (%) 0–5 cm 45.5 17.8 82.6 15.4 −0.7 0.7
5–15 cm 45.3 17.7 82.9 15.0 −0.8 0.7
15–30 cm 41.7 15.5 76.5 13.5 −1.0 0.5
30-60 cm 36.1 13.4 80.5 11.9 −0.6 0.3
60–100 cm 38.4 12.4 57.8 13.9 −1.3 −0.3
100-200 cm 38.0 11.2 62.6 15.6 −1.4 −0.4

Silt (%) 0–5 cm 36.5 7.7 61.9 12.0 −0.8 −0.2
5–15 cm 16.7 6.2 32.6 5.6 −0.7 0.2
15–30 cm 17.5 7.1 35.6 6.4 −1.0 0.3
30-60 cm 15.8 8.7 27.5 4.2 −0.4 0.3
60–100 cm 46.9 20.2 69.0 10.7 −1.2 0.4
100-200 cm 45.0 24.1 71.4 12.9 −1.5 0.3

CEC (C mol kg−1) 0–5 cm 27.5 4.7 62.3 14.0 −1.3 0.1
5–15 cm 27.5 5.2 62.3 14.5 −1.3 0.2
15–30 cm 29.9 5.0 64.0 14.6 −1.3 0.2
30-60 cm 32.9 7.0 62.3 13.3 −1.2 0.1
60–100 cm 32.4 10.6 65.3 14.9 −1.6 0.1
100-200 cm 31.0 13.9 54.5 14.7 −1.5 0.3

FC (%) 0–5 cm 24.9 9.0 41.0 6.8 −0.5 −0.7
5–15 cm 25.6 10.1 39.0 6.3 −0.4 −0.6
15–30 cm 26.7 12.1 39.9 5.7 −0.8 −0.2
30-60 cm 29.3 10.4 46.8 5.9 −1.1 0.4
60–100 cm 32.2 18.8 45.7 7.9 −1.5 −0.2
100-200 cm 30.5 15.2 50.4 8.3 −1.4 0.3

PWP (%) 0–5 cm 14.6 3.2 29.5 5.7 −0.9 0.1
5–15 cm 15.1 3.5 27.3 5.2 −0.9 0.3
15–30 cm 16.3 4.8 27.9 4.7 −1.1 0.3
30-60 cm 18.5 2.9 36.1 5.7 −1.0 0.3
60–100 cm 19.8 9.0 37.5 7.0 −1.3 0.1
100-200 cm 19.8 7.8 39.1 8.0 −1.5 −0.1
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validation techniques with 20 times repetition was used to evaluate the
performance of QRF model. The performance of QRF was evaluated
using indicators such as Coefficient of determination (R2), Root
Mean Square Error (RMSE), mean error (ME). Prediction interval
coverage percentage (PICP) was used to evaluate the uncertainty of
prediction.
3. Results and discussion

3.1. Summary statistics of soil properties

Summary of the soil properties are presented in Table 2. The soil pH
ranged from 4.7 to 9.9 with a mean and standard deviation of 8.2 and
1.1, respectively. The organic carbon content ranged between 0.11 and
1.16% with mean of 0.5% and standard deviation of 0.23%. The organic
carbon skewed positively whereas pH skewed negatively showed that
asymmetrical distribution. The higher variability in pH is mainly attrib-
uted to soil pedological factors and landmanagement. The soil hydraulic
properties such as field capacity and permanent wilting point were
ranged from 6 to 60% and 1.5 to 43.7% with mean and standard
deviation of 29.2, 18.5 and 12.2, 10.5% respectively. Cation exchange ca-
pacity of the soil varied from 2.0 to 80.9 cmol(+) kg−1with mean and
SD of 32.3 and 20.5 cmol(+) kg−1 respectively. Except pH and silt con-
tent, all other soil properties had registered negative kurtosis. Similar
way except, clay content and pH, all other properties showed positive
skewness. The correlation analysis showed that field capacity and per-
manent wilting point has significant positive correlation with clay and
silt and negative correlation with sand content.
3.2. Performance of Quantile Regression Forest Model in predicting soil
properties

The performance of Quantile Regression Forestmodelwas evaluated
by calculating statistical indicators viz., Coefficient of determination
(R2), Mean error (ME) and Root Mean Square Error (RMSE). The cross
validation results (Table 3 and Fig. 2a–h) showed that the combination
of different covariates explained the varaibilities of predicted soil prop-
erties viz., pH, organic carbon, CEC, clay, sand, silt, FC and PWP. The
model could capture low to medium variability (R2 = 0–56%) while
predicting pH, Organic carbon and CEC for different depth ranges.



Fig. 4. Predicted sand, silt, clay and CEC content in 0–5 cm depth.
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Among these soil properties, CEC prediction was good compared to pH
and Organic carbon. The present model explained 31–56% of variation
for prediction of CEC in different depth intervals. Similar results were
observed by different researchers (Gallo et al., 2018, R2 = 40%; Chagas
et al., 2018, R2 = 47%; Ghaemi et al., 2013, R2 = 45–65%). In case of
pH, only 8–23% of variability was captured by the model. The poor pre-
dictionmay be attributed tomore variability in pH influenced by soil in-
trinsic (pedogneic) and extrinsic (land management) factors. Like, pH,
the performance of the model for prediction of organic carbon is also
very low (R2 = 0–27%). The poor performance may be related to the
low levels of soil organic carbon compared to soils having high organic
carbon (Lo Seen et al., 2010; De et al., 2014; Gastaldi et al., 2012;
Dharumarajan et al., 2017; Dharumarajan et al., 2019a). The prediction
of particle size quantities viz., clay, sand and silt content were
fairly good. Prediction accuracy for sand is 41–49% with RMSE of
15.4–17.9%.R2 of silt varied from 29 to 49%for different depth intervals.
Similar results were observed by Akpa et al. (2014) who recorded R2

value of 16–56% for prediction of particle size fractions in Nigeria
using RFMwhereas Santra et al. (2017) found only 21–28% of variation
in sand content captured by Random forest algorithm.

Soil hydraulic properties are important for irrigation scheduling and
proper landuse planning (Dharumarajan et al., 2019b). Soil hydraulic
properties such as field capacity and permanent wilting point deter-
mines the availability and retention of the water for crop growth. Field
capacity and permanent wilting point were well predicted by QRF
model. Compared to field capacity (R2 = 30–38%), permanent wilting
point was predicted with high accuracy (R2 = 41–49%). Hong et al.
(2013) recorded digital soil mapping approach for prediction of soil hy-
draulic property with maximum accuracy (R2–61%) whereas Román
Dobarco et al. (2019) reported prediction accuracy (R2) of FC and PWP
were 21 and 29% respectively.

Prediction interval coverage probability (PICP) is an indication of ef-
ficiency of uncertainty measurements. The present predictions found
that the PICP values ranged from 83.2 to 92.2%. Overall, the prediction
performance of thismodelwas high for soil hydraulic properties. Higher
sample density is required for better results in tropical countries where
soil pattern is complex due to the geological uplift than other regions
(De et al., 2014).
3.3. Importance of predictor variables for predicting soil properties

RFM model estimates the importance of covariates based on how
best or worse the prediction would be if one or more variable is re-
moved and also it protects elimination of good predictor variables
which are important for the model (Prasad et al., 2006). Fig. 3a–h
shows the variable importance rankings of Random Forest model for
pH, OC, clay, sand, silt, CEC, FC and PWP. Elevation is emerged as top
predictor for prediction of clay and organic carbon. MRVBF and TWI
are ranked as most important predictor for prediction of pH and PWP.
Different bands of Sentinel −2 imagery occupies in the top position
for prediction of majority of soil properties. Different researchers re-
corded usefulness of Sentinel-2 imageries in prediction of different soil
properties (Castaldi et al., 2019; Gholizadeh et al., 2018; Vaudour
et al., 2019). Recently, Gomez et al. (2019) showed good discrimination
ability of time series Sentinel-2 images in identifying different texture
class and associated uncertainty.
4. Spatial prediction of soil properties

Mapping of soil properties is a preliminary step due its variability for
decision making such as the delineation of suitable crop growing areas
or identification of degraded areas. Summary statistics of predicted
soil properties are presented in Table 4. Predicted maps of sand, silt,
clay, CEC, FC and PWP in the surface (0–5 cm) along with uncertainty
using Quantile Regression Forest are presented in Figs. 4 & 5. The pre-
dicted sand content in 0–5 cm varied from 17.8–82.6%. The predicted
silt and clay content varied from 7.7–61.9% and 5.5–32.6% respectively.
High sand content recorded inNorth-eastern part of study area andhigh
clay and silt content recorded in north-western part. The high sand con-
tent of surface soils in North-eastern partmight be due to severity of the
erosion where finer particles are moved into the low lying areas. The
predicted cation exchange capacity varied from 4.7–62.3% and recorded
low CEC in north-eastern part. Predicted hydraulic properties viz., field
capacity and permanent wilting point ranged from 9.1–41% and
3.2–29.5% respectively. The spatial prediction of soil properties sug-
gested that distribution of soil properties on the surface are highly

Image of Fig. 4


Fig. 5. Predicted Organic carbon content, Field capacity and permanent wilting point in 0–5 cm depth.
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Image of Fig. 5
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variable due to variations in environmental factors, land management
and land use. The spatial resolution of the maps helps to assess and
monitor the soil health and preparation of proper land use plan.

5. Conclusion

The prediction of soil properties and uncertainty by QRF model was
reasonable and varied from 8 to 51% for surface and 0–56% for subsoil.
Except pH and OC, the present model predicted better for most of the
soil properties compared to previous studies. Weak variations in soil
properties, mixed lithologic occurrence and sparse sample density are
linkedwith performance of themodel. The data augmentation certainly
helps in reducing the uncertainty and over fitting and to improvemodel
accuracy further. The prediction can also be improvised by increasing
the environment covariates such as geology map and climatic datasets.
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References

Lo Seen, D., Ramesh, B.R., Nair, K.M., Martin, M., Arrouays, D., Bourgeon, G., 2010. Soil car-
bon stocks, deforestation and land-cover changes in the Western Ghats biodiversity
hotspot (India). Glob. Chang. Biol. 16, 1777–1792. https://doi.org/10.1111/j.1365-
2486.2009.02127.x.

Adhikari, K., Minasny, B., Greve, M.B., Greve, M.H., 2014. Constructing a soil class map of
Denmark based on the FAO legend using digital techniques. Geoderma 214–215,
101–113.

Akpa, S.I.C., Odeh, I.O.A., Bishop, T.F.A., Hartemink, A.E., 2014. Digital mapping of soil
particle-size fractions for Nigeria. Soil Sci. Soc. Am. J. 78, 1953–1966.

Arrouays, D., Grundy, M.G., Hartemink, A.E., Hempel, J.W., Heuvelink, G.B.M., Hong, S.Y.,
Lagacherie, P., Lelyk, G., McBratney, A.B., McKenzie, N.J., Mendonça-Santos, M.D.,
Minasny, B., Montanarella, L., Odeh, I.O.A., Sanchez, P.A., Thompson, J.A., Zhang, G.L.,
2014. GlobalSoilMap: towards a fine-resolution global grid of soil properties. Adv.
Agron. 125, 93–134.

Bishop, T.F.A., McBratney, A.B., Laslett, G.M., 1999.Modelling soil attribute depth functions
with equal-area quadratic smoothing splines. A comparison of prediction methods
for the creation of field-extent soil property maps. Geoderma 91, 27–45.

Castaldi, F., Hueni, A., Chabrillat, S., Ward, K., Buttafuoco, G., Bomans, B., Vreys, K., Brell, M.,
van Wesemael, B., 2019. Evaluating the capability of the sentinel 2 data for soil or-
ganic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 147,
267–282.

Chagas, C.S., Carvalho Júnior, W., Pinheiro, H.S.K., Xavier, P.A.M., Bhering, S.B., Pereira, N.R.,
Calderano Filho, B., 2018. 2018. Mapping soil cation exchange capacity in a semiarid
region through predictive models and covariates from remote sensing data. Rev. Bras.
Cienc Solo 42, e0170183. https://doi.org/10.1590/18069657rbcs20170183.

Dharumarajan, S., Hegde, R., Singh, S.K., 2017. Spatial prediction of major soil properties
using Random Forest techniques - a case study in semi-arid tropics of South India.
Geoderma Reg. 10C, 154–162. https://doi.org/10.1016/j.geodrs.2017.07.005.
Dharumarajan, S., Hegde, Rajendra, Janani, N., Singh, S.K., 2019a. The need for digital soil
mapping in India. Geoderma Reg. 15. https://doi.org/10.1016/j.geodrs.2019.e00204.

Dharumarajan, S., Hegde, R., Lalitha, M., Kalaiselvi, B., Singh, S.K., 2019b. Pedotransfer
functions for predicting soil hydraulic properties in semi-arid regions of Karnataka
Plateau, India. Curr. Sci. 116 (7), 1237–1246.

Gallo, B.C., José, A.M., Rizzo, R., Safanelli, J.L., Mendes, W. de S., Igo, F., Marcus, V., Danilo, J.,
Lacerda, M.P.C., 2018. Multi-temporal satellite images on topsoil attribute quantifica-
tion and the relationship with soil classes and geology. Remote Sens. 10, 1571.
https://doi.org/10.3390/rs10101571.

Gastaldi, G., Minasny, B., McBratney, A.B., 2012. Mapping the occurrence and thickness of
soil horizons within soil profiles. In: Minasny, B., Malone, B.P., McBratney, A.B. (Eds.),
Digital Soil Assessments and beyond. CRC Press, Balkema, London, pp. 145–148.

Gessler, P.E., Chadwick, O.A., Chamran, F., Althouse, L., Holmes, K., 2000. Modeling soil-
landscape and ecosystem properties using terrain attributes. Soil Sci. Soc. Am. J. 64,
2046–2056.

Ghaemi, M., Astaraei, A.R., Sanaeinejad, S.H., Zare, H., 2013. Using satellite data for soil cat-
ion exchange capacity studies. Int. Agrophys 27, 409–417. https://doi.org/10.2478/
intag-2013-0011.

Gholizadeh, A., Žižala, Daniel, Saberioon, Mohammadmehdi, Borůvka, Luboš, 2018. Soil
organic carbon and texture retrieving and mapping using proximal, airborne and
Sentinel-2 spectral imaging. Remote Sens. Environ. 218, 89–103.

Gomez, C., Dharumarajan, S., Féret, J.B., Lagacherie, P., Ruiz, L., Sekhar, M., 2019. Use of
sentinel-2 time-series images for classification and uncertainty analysis of inherent
biophysical property: case of soil texture mapping. Remote Sens. 11, 565.

Grundy, M.J., Viscarra Rossel, R.A., Searle, R.D., Wilson, P.L., Chen, C., Gregory, L.J., 2015.
Soil and landscape grid of Australia. Soil Res 53, 835–844.

Grunwald, S., Thompson, J.A., Boettinger, J.L., 2011. Digital soil mapping and modeling at
continental scales: finding solutions for global issues. Soil Sci. Soc. Am. J. 75,
1201–1213.

Hong, S.Y., Minasny, Budiman, Han, Kyung Hwa, Kim, Yihyun, Lee, Kyungdo, 2013.
Predicting and mapping soil available water capacity in Korea. Peer J. 1, e71.
https://doi.org/10.7717/peerj.71.

Jackson, M.L., 1962. Soil Chemical Analysis. Prentice Hall, Englewood Cliffs, New York,
U.S.A.

Jackson, M.L., 1973. Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd, New Delhi.
De, C.J.W., Lagacherie, P., da Silva Chagas, C., Filho, B., Bhering, S.B., 2014. A regional-scale

assessment of digital mapping of soil attributes in a tropical hillslope environment.
Geoderma 232–234, 479–486.

Lagacherie, P., McBratney, A.B., 2007. Spatial soil information systems and spatial soil in-
ference systems: perspectives for digital soil mapping. In: Lagacherie, P., McBratney,
A.B., McBratney, A.B., Mendonça-Santos, M.L., Minasny, B. (Eds.), 2003. On Digital
Soil Mapping. Geoderma. 117, pp. 3–52. https://doi.org/10.1016/S0016-7061(03)
00223-4.

Meinshausen, N., 2006. Quantile regression forests. J. Mach. Learn. Res. 7, 983–999.
McBratney, A.B., Mendonça-Santos, M.L., Minasny, B., 2003. On digital soil mapping.

Geoderma 117, 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4.
Mulder, V.L., Lacoste, M., Richer de Forges, A.C., Martin, M.P., Arrouays, D., 2016. National

versus global modelling the 3D distribution of soil organic carbon inmainland France.
Geoderma 263, 13–34.

Poggio, L., Gimona, A., 2017. 3D mapping of soil texture in Scotland. Geoderma Reg. 9,
5–16. https://doi.org/10.1016/j.geodrs.2016.11.003, 2017.

Prasad, A.M., Iverson, L.R., Liaw, A., 2006. Newer classification and regression tree tech-
niques: bagging and random forests for ecological prediction. Ecosystems 9, 181–199.

Richards, L.A., 1954. Diagnosis and improvement of saline and alkali soils. USDA, Hand
Book No, 60, p. 101.

Richards, L.A., Gardner, W.R., Ogata, G., 1956. Physical processes determining water loss
from soil. Soil Sci. Soc. Am. Proc. 20, 310–314.

Román Dobarco, M., Bourennane, H., Arrouays, D., Saby, N.P.A., Cousin, I., Martin, M.P.,
2019. Uncertainty assessment of GlobalSoilMap soil available water capacity prod-
ucts: a French case study. Geoderma 344, 14–30. https://doi.org/10.1016/j.
geoderma.2019.02.036.

Sanchez, P.A., Ahamed, S., Carr'e, F., Hartemink, A.E., Hempel, J., Huising, J., Lagacherie, P.,
McBratney, A.B., McKenzie, N.J., Mendonc, De Lourdes, Santos, M., Minasny, B.,
Montanarella, L., Okoth, P., Palm, C.A., Sachs, J.D., Shepherd, K.D., Vagen, T.G.,
Vanlauwe, B., Walsh, M.G., Winowiecki, L.A., Zhang, G.L., 2009. Digital soil map of
the world. Science 325, 680–681. https://doi.org/10.1126/science.1175084.

Santra, P., Kumar, M., Panwar, N., 2017. Digital soil mapping of sand content in arid west-
ern India through geostatistical approaches. Geoderma Reg. 9, 56–72.

Vaudour, E., Gomez, C., Fouad, Y., Lagacherie, P., 2019. Sentinel-2 image capacities to pre-
dict common topsoil properties of temperate and Mediterranean agroecosystems.
Remote Sens. Environ. 223, 21–33.

Vaysse, K., Lagacherie, P., 2017. Using quantile regression forest to estimate uncertainty of
digital soil mapping products. Geoderma 291, 55–64. https://doi.org/10.1016/j.
geoderma.2016.12.017.

Walkley, A., Black, I.A., 1934. An estimation of the method for determining soil organic
matter and a proposed modification of the chromic acid titration method. Soil Sci.
37, 29–38.

https://doi.org/10.1016/j.geodrs.2019.e00250
https://doi.org/10.1111/j.1365-2486.2009.02127.x
https://doi.org/10.1111/j.1365-2486.2009.02127.x
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0010
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0010
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0010
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0015
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0015
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0020
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0020
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0025
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0025
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0025
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0030
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0030
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0030
https://doi.org/10.1590/18069657rbcs20170183
https://doi.org/10.1016/j.geodrs.2017.07.005
https://doi.org/10.1016/j.geodrs.2019.e00204
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0050
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0050
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0050
https://doi.org/10.3390/rs10101571
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0060
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0060
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0060
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0065
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0065
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0065
https://doi.org/10.2478/intag-2013-0011
https://doi.org/10.2478/intag-2013-0011
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0075
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0075
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0075
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0080
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0080
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0080
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0085
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0090
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0090
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0090
https://doi.org/10.7717/peerj.71
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0100
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0100
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0105
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0110
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0110
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0110
https://doi.org/10.1016/S0016-7061(03)00223-4
https://doi.org/10.1016/S0016-7061(03)00223-4
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0120
https://doi.org/10.1016/S0016-7061(03)00223-4
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0125
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0125
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0125
https://doi.org/10.1016/j.geodrs.2016.11.003, 2017
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0135
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0135
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0140
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0140
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0145
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0145
https://doi.org/10.1016/j.geoderma.2019.02.036
https://doi.org/10.1016/j.geoderma.2019.02.036
https://doi.org/10.1126/science.1175084
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0160
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0160
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0165
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0165
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0165
https://doi.org/10.1016/j.geoderma.2016.12.017
https://doi.org/10.1016/j.geoderma.2016.12.017
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0175
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0175
http://refhub.elsevier.com/S2352-0094(19)30249-4/rf0175

	Digital soil mapping of key GlobalSoilMap properties in Northern Karnataka Plateau
	1. Introduction
	2. Materials and methods
	2.1. Study area
	2.2. Sampling methodology
	2.3. Environmental covariates and models used

	3. Results and discussion
	3.1. Summary statistics of soil properties
	3.2. Performance of Quantile Regression Forest Model in predicting soil properties
	3.3. Importance of predictor variables for predicting soil properties

	4. Spatial prediction of soil properties
	5. Conclusion
	Acknowledgements
	Appendix A. Supplementary data
	References




